GENETİC DİVERSİTY AND GENERATİONAL SELECTİON İN BEES

Authors

Keywords:

Genetic Diversity, Generation Selection, Bee Breeding, Disease Resistance, Sustainable Beekeeping, Controlled Mating, Artificial Selection

Abstract

This study examines the effects of genetic diversity conservation and generation selection processes on beekeeping in bees (Apis mellifera). Bees play an important pollinator role in ecosystems and face various threats such as climate change, habitat loss, diseases and parasites. Genetic diversity is a key factor that enables bee populations to adapt to environmental changes, develop resistance to diseases and maintain the overall colony health. Within the scope of the study, modern breeding techniques such as natural and artificial selection processes, hybridization and genetic markers were discussed to preserve the genetic structure of bees. It was observed that selection processes have a critical importance in sustainable beekeeping practices in terms of honey production, colony health, resistance to diseases and environmental adaptation. It was determined that especially controlled mating, artificial insemination and genetic analyses provide a great advantage in transferring the desired genetic traits. As a result, the conservation of genetic diversity and the application of balanced generation selection methods in beekeeping stand out as an indispensable requirement for long-term sustainability.

References

1. Awodiran, M. O., Amoo, T. E., & Kehinde, T. O. (2021). Genetic diversity of four populations of honey bee, Apis mellifera (Linnaeus, 1758) from two vegetation zones in Nigeria. Journal of Entomology and Nematology, 13(1), 1–11. https://doi.org/10.5897/JEN2020.0261.

2. Baudry, E., Kryger, P., Allsopp, M. H., & Koeniger, N. (2004). Multiple mating in Apis mellifera capensis: The effect of genetic diversity on colony fitness. Molecular Ecology, 13(5), 1195–1205. https://doi.org/10.1111/j.1365-294X.2004.02132.x

3. Bienefeld, K. (2016). Breeding success or genetic diversity in honey bees? Bee World, 93(2), 40–44. https://doi.org/10.1080/0005772X.2016.122754

4. Brascamp, P., Uzunov, A., Bijma, P., & Du, M. (2024). Genetics of selection in honeybees. Wageningen University & Research. Retrieved from https://edepot.wur.nl/67506

5. Büchler, R., Berg, S., & Le Conte, Y. (2010). Breeding for resistance to Varroa destructor in Europe. Apidologie, 41(3), 393–408. https://doi.org/10.1051/apido/2010011

6. Collins, A. M., & Pettis, J. S. (2001). Varroa resistance in honey bees. American Bee Journal, 141(11), 813–816.

7. Evans, J. D., Chen, Y. P., Di Prisco, G., Pettis, J., & Williams, V. (2011). Bee health: The role of pathogens, parasites and pests. Journal of Apicultural Research, 50(1), 1–3. https://doi.org/10.3896/IBRA.1.50.1.01

8. Frankham, R., Ballou, J. D., & Briscoe, D. A. (2010). Introduction to conservation genetics (2nd ed.). Cambridge University Press.

9. Garnery, L., Solignac, M., Celebrano, G., & Cornuet, J. M. (1993). A simple test using restricted PCR-amplified mitochondrial DNA to study the genetic structure of Apis mellifera L. Experientia, 49(11), 1016–1021. https://doi.org/10.1007/BF02125651

10. Goulson, D., Nicholls, E., Botías, C., & Rotheray, E. L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347(6229), 1255957. https://doi.org/10.1126/science.1255957

11. Gritsenko, D., Temirbayeva, K., Taskuzhina, A., Kostyukova, V., Pozharskiy, A., Kolchenko, M., Khusnitdinova, M., Krupskiy, O., Mayer, A., Nuralieva, U., & Moldakhmetova, G. (2023). First evaluation of genetic diversity among honeybee populations in Kazakhstan. Apidologie, 54(61). https://doi.org/10.1007/s13592-023-01034

12. Seeley, T. D., & Tarpy, D. R. (2007). Queen promiscuity lowers disease within honeybee colonies. Proceedings of the Royal Society B, 274, 67–72.

13. Tarpy, D. R. (2003). Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proceedings of the Royal Society B, 270, 99–103.

14. Büchler, R., Berg, S., & Le Conte, Y. (2010). Breeding for resistance to Varroa destructor in Europe. Apidologie, 41, 393–408.

15. Hartl, D. L., & Clark, A. G. (2007). Principles of population genetics (4th ed.). Sinauer Associates.

16. Huang, W. F., Solter, L. F., Yau, P. M., & Imai, B. S. (2013). Nosema ceranae escapes fumagillin control in honey bees. PLoS Pathogens, 9(3), e1003185. https://doi.org/10.1371/journal.ppat.1003185

17. Ilyasov, R. A., Kwon, H.-W., & Nikolenko, A. G. (2020). Genetic improvement of honey bees for keeping in extremal climatic conditions. ResearchGate. Retrieved from https://www.researchgate.net/publication/34751948.

18. Kaskinova, M. D., Salikhova, A. M., Gaifullina, L. R., & Saltykova, E. S. (2023). Genetic methods in honey bee breeding. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding, 27(4), 366–372. https://doi.org/10.18699/VJGB-23-4

19. Kence, A., & Kence, M. (2000). Honeybee conservation in Turkey: A case study of Apis mellifera anatoliaca. Apidologie, 31(3), 365–366.

20. Le Conte, Y., & Navajas, M. (2008). Climate change: Impact on honey bee populations and diseases. Revue scientifique et technique (International Office of Epizootics), 27(2), 499–510. https://doi.org/10.20506/rst.27.2.1819

21. Locke, B. (2016). Natural Varroa mite resistance in honey bees. Apidologie, 47(3), 467–482. https://doi.org/10.1007/s13592-015-0417-6

22. Meixner, M. D., Pinto, M. A., Bouga, M., Kryger, P., & Ivanova, E. (2013). Standard methods for characterizing subspecies and ecotypes of Apis mellifera. Journal of Apicultural Research, 52(4), 1–28. https://doi.org/10.3896/IBRA.1.52.4.07

23. Panziera, D., Requier, F., Chantawannakul, P., Pirk, C. W. W., & Blacquière, T. (2022). The diversity decline in wild and managed honey bee populations urges for an integrated conservation approach. Frontiers in Ecology and Evolution, 10, 767950. https://doi.org/10.3389/fevo.2022.76795

24. Rinderer, T. E., Harris, J. W., Hunt, G. J., & de Guzman, L. I. (2010). Breeding for resistance to Varroa destructor in North America. Apidologie, 41(3), 409–424. https://doi.org/10.1051/apido/2010015

25. Ruttner, F. (1988). Biogeography and taxonomy of honeybees. Springer-Verlag.

26. Seeley, T. D., & Tarpy, D. R. (2007). Queen promiscuity lowers disease within honeybee colonies. Proceedings of the Royal Society B: Biological Sciences, 274(1606), 67–72. https://doi.org/10.1098/rspb.2006.3702

27. Tarpy, D. R. (2003). Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proceedings of the Royal Society B: Biological Sciences, 270(1510), 99–103. https://doi.org/10.1098/rspb.2002.2199

28. Tarpy, D. R., & Seeley, T. D. (2006). Lower disease infections in honeybee (Apis mellifera) colonies headed by polyandrous versus monandrous queens. Naturwissenschaften, 93(4), 195–199. https://doi.org/10.1007/s00114-006-0081-4

29. Tarpy, D. R., Caren, J. R., & Delaney, D. A. (2023). Meta-analysis of genetic diversity and intercolony relatedness among reproductives in commercial honey bee populations. Frontiers in Insect Science, 3, 1112898. https://doi.org/10.3389/finsc.2023.111289

30. Van Engelsdorp, D., & Meixner, M. D. (2010). A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of Invertebrate Pathology, 103(S1), S80–S95. https://doi.org/10.1016/j.jip.2009.06.011

31. Van Engelsdorp, D., Hayes, J., Underwood, R. M., & Pettis, J. (2009). A survey of honey bee colony losses in the United States, fall 2007 to spring 2008. PLoS ONE, 4(8), e6481. https://doi.org/10.1371/journal.pone.0006481

32. Whitfield, C. W., Behura, S. K., Berlocher, S. H., Clark, A. G., Johnston, J. S., Sheppard, W. S., & Tsutsui, N. D. (2006). Thrice out of Africa: Ancient and recent expansions of the honey bee, Apis mellifera. Science, 314(5799), 642–645. https://doi.org/10.1126/science.1132772

Downloads

Published

03/31/2025

How to Cite

Seyidova, G. (2025). GENETİC DİVERSİTY AND GENERATİONAL SELECTİON İN BEES . Anatolian Journal of Social Sciences and Education E-İSSN: 3062-3170, 1(1). Retrieved from https://anatolianjournal.com/index.php/pub/article/view/43